Hugh Blair-Smith

871 Main St., P O Box 1161
Dennis, MA 02638-6161
December 2008
Annotations to David Mindell, Digital Apollo: Human and Machine in Spaceflight, MIT, 2008
First I must express my admiration for this work and its author, placing our adventures in Apollo into the greater context of the evolving relationship between man and machine—a branch of history that I feel has been under-reported, at least at this philosophical level. People say of Apollo that its story reads like science fiction, and that may be a keener insight than one might think. The people who have been exploring the relationship between man and (imagined) machines for centuries are science fiction writers. Manned space flight, as Prof. Mindell points out, is the field in which this relationship has had to advance more rapidly than at any time in history. It was a great pleasure to attend the meetings where oral history was constructed out of our reminiscences, and to give (with one of my favorite colleagues, Don Eyles) a lecture to Prof. Mindell’s students. I make the following annotations to clarify a few points in this book where my name is mentioned. Also, at the risk of seeming to be nit-picky, I note where my name is mispunctuated by hyphenation errors.
Preface and Acknowledgments, page xii

I am gratified to be mentioned three times in various aspects of acknowledgments, but must point out that the first appearance of my name lacks the hyphen; the other two are correct.

Chapter 6, Reliability or Repair?, page 126
Logic designers Ray Alonso, Hugh Blair-Smith, and Albert Hopkins saw the redesign as “an unusual second chance” to tweak their work.
It was unusual, but not actually unique in this project. Progressing from this Block I design to the Block II design was “an unusual third chance!” Without all those chances, the AGC could never have succeeded in doing what it did.
Hall soon added to the computer not only the digital NOR-gate IC, but also a new analog IC for a sense amplifier—to condition the analog signals from the spacecraft’s numerous sensors.
The term “sense amplifier” was used consistently to mean the circuit that discriminated and shaped the sort-of-digital waveforms coming from the rope memory’s sense lines, which were currents induced by the reset pulse that restored the magnetization of the one rope core that had been set by the addressing process. Although formally digital, they were too sloppy a shape from their electromagnetic origins to serve in the logic circuitry, so the job of the sense amplifiers was to discriminate legitimate ones (fat waveforms) from zeros-with-noise (scrawny waveforms) and shape them into proper digital pulses. There was nothing in the computer to receive or condition analog signals from sensors; such signals were processed by non-computer modules called CDUs (Coupling and Display Units), in which the word “Display” is a confusing vestigial element from some earlier design concept, perhaps that of driving the FDAI directly—see p. 159.
Chapter 6, Reliability or Repair?, page 127
There was still no group devoted to software.
As a statement of management structure, this is correct, but it’s important to understand the IL’s culture that control system engineers (reporting to Dick Battin) would do any necessary programming as a matter of course. Page 146 makes this clear. Of those engineers, two (Tom Lawton and Charlie Muntz) applied themselves to the interpreter, task control, and other such systems software, with frequent informal participation by Hal Laning and me. So the group of control system analysts really were devoted to both application and systems software, though it’s true that they were for years outnumbered by engineers developing several kinds of hardware: inertial measurement units, CDUs, optical instruments, etc., in addition to the computer.

Chapter 7, Programs and People, page 149
Designer Hugh-Blair Smith created a language called “Basic,” a low-level assembly language of about forty instructions (distinct from the high-level BASIC programming language developed at Dartmouth at about the same time).
Aside from the misplacement of my hyphen, this is unfortunately misleading in several ways. The language I created was called “Yul” (after the so-called Christmas Computer that led off the Mars series) and it is indeed an assembly language and therefore assuredly low-level. But when we talk about how many “instructions” it has, we get into a muddle caused mainly by our failure to coin a vocabulary that would distinguish its many aspects.

From its inception, the Yul System was a creature whose like, I’m pretty sure, had never been seen before and probably never since: a multi-target cross-assembler. It ran on whatever our current mainframe was (IBM 650, Honeywell 800/1800, IBM 360) and produced binary object code for (as my original mandate put it) “an unknown number of computers with unknown characteristics.” The mandate wasn’t actually that broad, since it was a given that all the computers would have relatively short words and a single-address instruction format.

Nevertheless, the first question about “language” is: if Yul is one language (essentially true grammatically, despite the different lists of machine instructions and some details of interpretive code grammar among the different object machines), what do you call the instructions for AGC Block I to distinguish them from those for AGC Block II? A “dialect” perhaps, or even a “jargon”? We didn’t trouble to answer that, which was OK for us at the time, but admittedly makes it difficult for a historian taking the broad view.
The second question about “language” is: if Yul for AGC Block II is one language, what word do you use to denote lines of code that produce executable machine instructions, to distinguish them from those that produce numerical constants that are “interpretive code,” i.e. that represent the pseudo-instructions of a much more powerful virtual machine? Well, I just gave away the partial answer: we did speak of “interpretive language,” but we didn’t bother to have a standard word for the rest, except in one extremely narrow context.
One of the ways in which AGC code was unusual (if not unique in its day) was the casual mixing of interpretive code and … “the other kind.” I believe it was customary at that time to make programs all interpretive or not. You’d compile or assemble a completely interpretive-language program and let the interpreter program load the object deck and run it. But in Apollo, interpretive code was usable whenever speed was unimportant but compactness and a somewhat elevated level of meaning (e.g. vector arithmetic) was critical; generally, that meant navigation and most guidance functions, but not control … and certainly not the digital autopilot. So the flow of control would go along at the low level of actual machine instructions until it could be passed to the Interpreter via an ordinary subroutine call. Then the words following that call would be treated as the input parameters to the “subroutine,” i.e. the interpretive object code. At some point in the interpretive logic flow, it would be necessary to come out of the interpretive mode (exit the interpreter “subroutine”) and resume executing actual instructions. For this purpose we created the interpretive op code RTB, meaning “return to basic”. So that was the narrow context: whenever we had to examine the seam between the two levels, we referred to the actual machine instruction set as “basic”—very much small b, and something much less imposing than a “language.”
This discussion, I grant, goes deeper into computer science than Prof. Mindell wanted or needed to do in this book. I just don’t want it to appear that I was trying to tread on David Kemeny’s turf or that of his Dartmouth product, both of which I never heard of until many years later.

In any case, the “language,” however defined, was only a part of my contribution. The Yul System was, as I said, a multi-target cross-assembler, but the Honeywell 800/1800 implementation (1962-67) also included a version control system based on revision numbers and author names maintained on magnetic tapes, and that function was ported to disk files in the IBM 360 implementation, where Yul was rather prosaically renamed GAP (General Assembler Program). These same implementations also provided a function I called “manufacturing” that produced the “paper” (actually Mylar®) tape that controlled the rope weaving machine described in pp. 154-157. Those tapes also had a version control aspect: the first few feet of every tape was punched in a dot-matrix font with the program’s name, revision number, and “drawing” number, so that you could hold it up to the light and be quite certain of what you were dealing with.
Chapter 7, Programs and People, page 154
The original Mars computer had 4,000 words, which was what the IL proposed for Apollo. As built, the original Apollo computer had 8,000 words fixed memory, then it was doubled to 16,000, then to 36,864 fixed memory and 2,048 words erasable for the Block II.

There are several inaccuracies and inconsistencies here. If the word counts are to be spelled out, they should be accurate: 4,096, 8,192, and 16,384 for the preliminary values. Or, all the counts could have been rendered in k (= 1024): 4k words, 8k words, 16k words, 36k words; and 2k words for erasable. And I would have mentioned here that the erasable count started at 512 words (½k) in Mod 3C, and doubled to 1,024 words (1k) in Block I.
The phrase “original Apollo computer” is unfortunately ambiguous, since the Mars computer Mod 3C prototype (with its 3½k words fixed and ½k words erasable) did wear that title for a while, before the technology change and redesign resulting in AGC Block I.

Much more important, the intermediate numbers are just wrong. Block I started with 12k words fixed and by 1963 was doubled to 24k by running twice as many wires per core as soon as the weaving technology would support it. By Block II, we found that three times was achievable, hence 36k fixed.

The expansion from 3½k to 12k was particularly momentous because the instruction word’s 12-bit address field was no longer wide enough, so we re-architected the fixed memory to use a 5-bit “bank register” in conjunction with 10 bits of the address field, leaving 2k of “fixed-fixed,” meaning fixed memory accessed independently of the bank register. Those 15 bits could address up to 32k words, so the expansion to 36k required the invention of a “super-bank register” relevant only to the highest-numbered banks of fixed. Similarly, doubling the erasable to 2k needed a 3-bit “ebank register” to combine with 8 bits of the address field, leaving ¾k of “fixed-erasable,” meaning erasable memory accessed independently of the ebank register.
Chapter 7, Programs and People, page 155, legend for Figure 7.3

Each core thus stores 12 bits.

As the figure shows in its upper left corner, what each core stores is actually 12 words of 16 bits each, or 192 bits. I had a nagging anxiety that Yul would be called upon to rearrange the program’s fixed-memory allocations to avoid cases where such sets of 12 words contained too many ones to fit in their cores, but in the event, the randomness of content was sufficient to prevent this case from arising. The fact that the 12 words were never consecutive, but were allocated to addresses 256 apart, must have helped.
-4-

